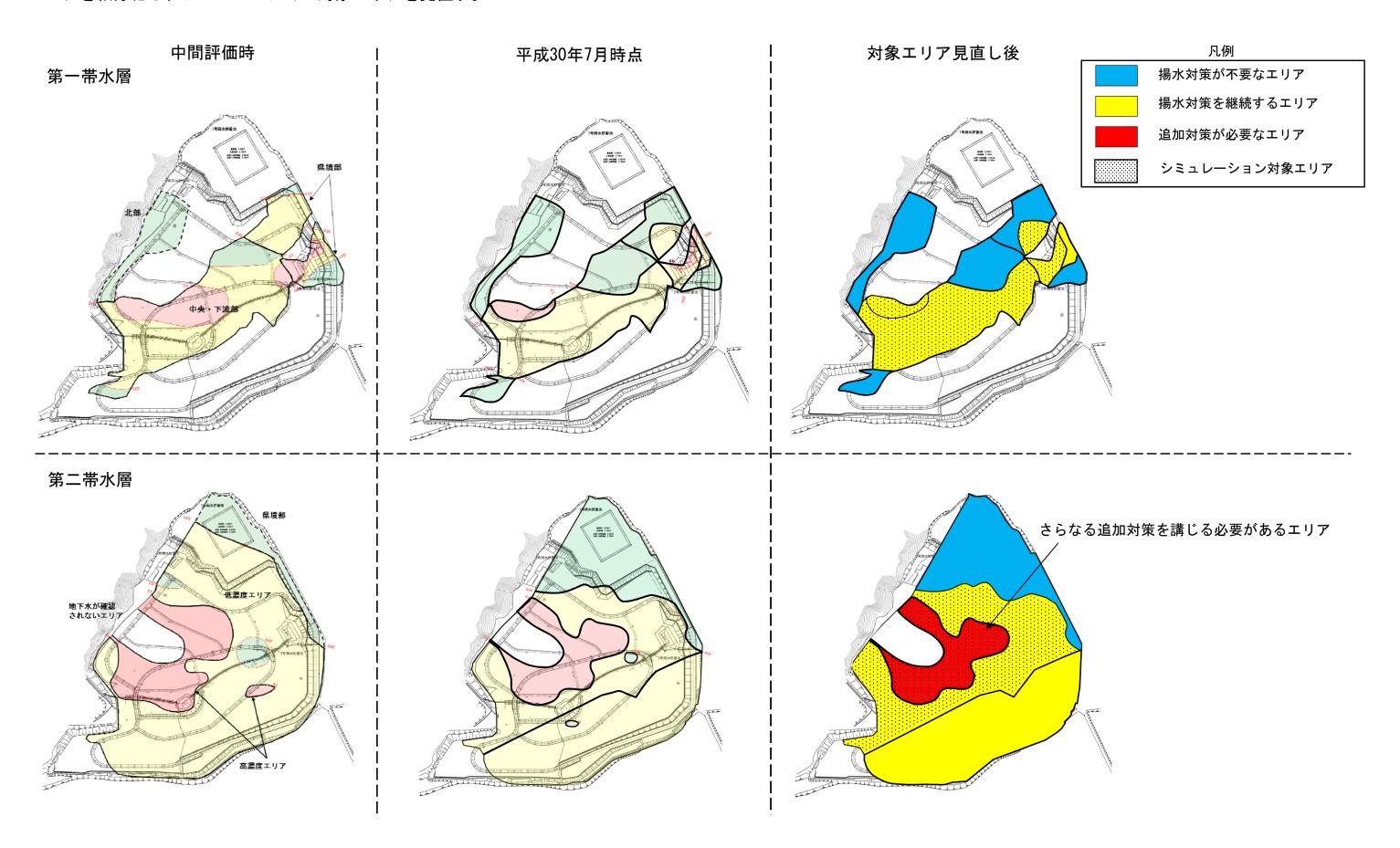

3. 第一帯水層の評価

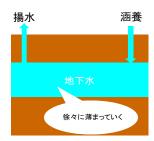
エリフ	P	1, 4-ジオキサン濃度変化状況	追加対策の今後の方向性
	①北部	・濃度が低下しており、環境基準値 (0.05 mg/L) 以下となるエリアが拡大している。 ・浸透枡への注水及び集水井戸 (CW-1) による揚水効果により、0.5 mg/Lを超えるエリアが 縮小傾向にあることから、このまま濃度の推移を注視していく。	・対策は不要。
県境部	(全) 判部	・ア-26~ア-27周辺は地下水の流動性が低く、局所的に汚染地下水が溜まっていたためにこれまでは濃度変化が見られなかったが、直接揚水により濃度が低下した。 ・ア-29については、集水井戸(CW-1)による揚水効果により濃度が低下しており、対策の効果がみられることに加え、直接揚水によってさらに濃度が低下した。	・ア-26、27、29からの揚水を継続する。
	③上流側	・濃度は低下しており、環境基準値以下となっているエリアが拡大している。	・対策は不要。
中央・下流部	④下流側	・0.5 mg/Lを超えるエリアは縮小傾向にある。 ・ア-52-1の濃度は徐々に低下しており、直接揚水によってさらに濃度が低下した。	- ア-52-1からの揚水を継続する。
⑤北側		・環境基準値以下を維持している。	・対策は不要。

4. 第二帯水層の評価



エリア 1.4-ジオキサン濃度変化状況 追加対策の今後の方向性 11北側 環境基準値以下を維持している。 ・対策は不要。 ・濃度は低下しており、環境基準値以下となっているエリアが拡大している。 ②上流側 対策は不要。 ・第二帯水層の上部に透水係数が低い凝灰岩が厚く堆積し、雨水が浸透しにくいため、濃度 低濃度エリア |変化があまりみられない。 ③南側 ア-49-2、51-2からの揚水を継続する。 ・ア-49-2は直接揚水により濃度に変化があったが、一時的なものである可能性がある。 ・ア-51-2は直接揚水により濃度が低下した。 ・集水井戸 (CW-2、3) による揚水効果により高濃度エリアは縮小傾向にある。 ・CW-2の上流側に5 mg/Lを超える1,4-ジオキサンが賦存していることが確認されている。 ・CW-2上流側の高濃度汚染エリア、DW-18、DW-16周辺の浄化促進のために効果的 4高濃度エリア ・DW-18は揚水できているが、1,4-ジオキサン濃度に変化がみられない。 ・CW-2からの揚水開始以降、DW-16は揚水できておらず、また、近傍のア-43の地下水位は な対策を講じる必要がある。 平成27年度の揚水井戸稼働開始以降低下した状況が継続している。

1.4-ジオキサン濃度分布 第二帯水層(平成30年7月)


5. シミュレーション対象エリアの見直し

1,4-ジオキサン濃度が環境基準値以下まで低下したエリアが拡大していることや追加対策が必要なエリアが絞られてきたことを踏まえ、対策の必要性に応じて各エリアを細分化し、シミュレーション対象エリアを見直す。

6. パラメータの見直し

ー浄化シミュレーションの考え方ー 揚水と涵養を繰り返すことにより、地下水の1,4-ジオキサン濃度がどのくらいの期間で環境基準 値以下になるかを算出したもの。

計算式

 $C_{n} \! = \! \! \frac{ \! \left\{ \, \left(V \times C_{n-1} \right) - \left(Q \times C_{n-1} \times \, \alpha \, \right) \, \right\} }{V} \! \! = \left\{ V \! - \left(Q \times \, \alpha \, \right) \, \right\} \times \! \! \! \frac{C_{n-1}}{V} \! \!$

C_n: n日後の1, 4-ジオキサン濃度 (mg/L)

V : 地下水賦存量 (m³)

C_{n-1}: n-1日後の1, 4-ジオキサン濃度 (mg/L)

Q:揚水量 (m³)

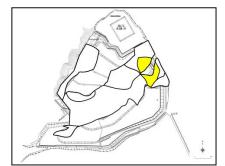
α: 浄化効率(揚水浄化による1,4-ジオキサンの除去効率)

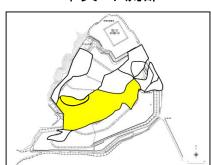
	区分	中間	評価	第2次評価 (対象エリア見直し後)			
	13	県境部	中央·下流部	県境部	中央·下流部		
	面積(m²)	8,584	25,951	3,522	24,176		
	容積(m³)	15,591	64,203	8,415	70,880		
	層厚(m)	1.8	2.5	2.4	2.9		
第一帯水層	有効間隙率(%)	30	30	30	30		
	地下水賦存量(m³)	4,677	19,261	2,525	21,264		
	浄化効率	1	1	0.34	1.36		
	初期濃度(mg/L)	0.32	0.33	_	-		
	平成30年7月濃度	_	_	0.15	0.28		
	揚水量(m³/日)	15.5	57.5	28.7	23.3		

	区分	中間	評価	第2次評価 (対象エリア見直し後)			
	_,	低濃度エリア	高濃度エリア	低濃度エリア	高濃度エリア		
	面積(m²)	63,171	17,727	29,268	13,094		
	容積(m³)	356,214	150,295	153,420	66,886		
	層厚(m)	5.6	8.5	5.2	5.1		
第二帯水層	有効間隙率(%)	24.6	22.1	24.6	22.1		
	地下水賦存量(m³)	87,629	33,215	37,741	14,782		
	浄化効率	1	1	0.59	0.46		
	初期濃度(mg/L)	0.16	1.3	_	_		
	平成30年7月濃度	_	_	0.12	1.15		
	揚水量(m³/日)	108.9	79.0	92.0	77.0		

初期濃度 : 中間評価時におけるシミュレーションの初期濃度 (H28.8時点の平均値) 平成30年7月濃度 : 第2次評価におけるシミュレーションの初期濃度 (H30.7時点の平均値※)

揚水量(第2次評価): H29.10~H30.7までの平均値

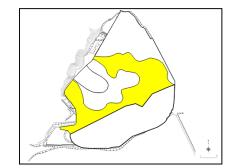

平成30年7月濃度 :第2次評価におけるシミュレーションの初期濃度(H30.7時点の平均値※) 揚水量(中間評価) :中間評価時におけるシミュレーションにより算出した必要揚水量

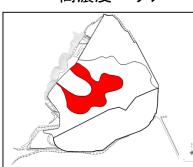

第2次評価におけるシミュレーション対象エリア

第一帯水層

県境部

中央·下流部

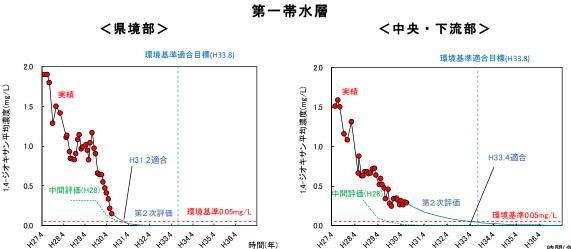




第二带水層

低濃度エリア

高濃度エリア

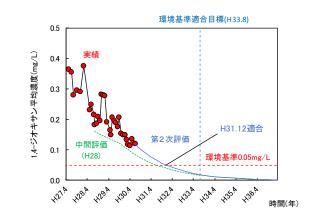

※ H30.7時点の平均値について:第一帯水層及び第二帯水層低濃度エリアは算術平均、第二帯水層高濃度エリアはCW-2,3からの揚水による寄与が他のエリアよりも大きいことから、 各揚水井戸の揚水量で重み付けを行った加重平均濃度を採用した。

浄化効率について

- 揚水により減少していく地下水中の1,4-ジオキサンの量を基に推定された1,4-ジオキサン濃度と、各エリアの1,4-ジオキサン濃度(実測値)の平均値の比(想定値/実測値)を浄化効率と定義する。
- 季節変動を考慮し、H29.10~H30.7の平均値を今回のシミュレーションにおける浄化効率として採用した。
- 〇 H29年度の追加対策工事で集水井戸を設置した第一帯水層県境部と第二帯水層高濃度エリアについては、集水井戸設置前後で揚水の状況が異なるため、本格稼働したH29.10以降から推定1,4-ジオキサン濃度を算出し、浄化効率を算出した。

																					•						
			H28.8	H28.9	H28.10	H28.11	H28.12	H29.1	H29.2	H29.3	H29.4	H29.5	H29.6	H29.7	H29.8	H29.9	H29.10	H29.11	H29.12	H30.1	H30.2	H30.3	H30.4	H30.5	H30.6	H30.7	浄化効率
		ジオキサン濃度実測(mg/l)	0.85	0.84	0.83	0.91	1.09	1.14	0.96	0.99	1.01	0.95	0.83	1.04	1.17	0.97	0.90	0.65	0.64	0.64	0.54	0.47	0.41	0.33	0.22	0.15	
		揚水量実績(m3)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	314.12	1170.19	1090.02	773.22	527.11	770.52	880.25	1140.92	982.61	1070.22	
	県境部	ジオキサン残量(g)計画															2273	1219	693	481	380	264	172	94	58	33	
		ジオキサン濃度(mg/l)想定															0.90	0.48	0.27	0.19	0.15	0.10	0.07	0.04	0.02	0.01	
第一帯水層		比															1.00	0.74	0.43	0.30	0.28	0.22	0.17	0.11	0.10	0.09	0.34
第一市小店		ジオキサン濃度実測(mg/l)	0.62	0.68	0.67	0.65	0.66	0.71	0.72	0.63	0.52	0.59	0.51	0.47	0.33	0.45	0.28	0.24	0.33	0.34	0.31	0.26	0.31	0.26	0.29	0.28	
		揚水量実績(m3)	2818.69	3682.37	1450.16	93.23	99.43	79.33	63.95	94.05	50.50	753.43	763.80	124.00	105.23	11.77	0.00	1.00	0.00	0.00	0.00	529.57	2428.82	1558.75	1079.44	1495.56	
	中央・下流部	ジオキサン残量(g)計画	13237	10945	10198	10153	10106	10068	10038	9994	9970	9617	9271	9217	9172	9166	9166	9166	9166	9166	9166	8938	7917	7336	6964	6474	
		ジオキサン濃度(mg/l)想定	0.623	0.515	0.480	0.477	0.475	0.473	0.472	0.470	0.469	0.452	0.436	0.433	0.431	0.431	0.431	0.431	0.431	0.431	0.431	0.420	0.372	0.345	0.328	0.304	
		比	1.00	0.76	0.71	0.74	0.72	0.66	0.66	0.75	0.91	0.76	0.85	0.92	1.30	0.95	1.55	1.79	1.30	1.26	1.37	1.62	1.22	1.32	1.13	1.08	1.36
		ジオキサン濃度実測(mg/l)	0.18	0.19	0.21	0.20	0.28	0.28	0.28	0.19	0.17	0.15	0.21	0.20	0.19	0.18	0.21	0.15	0.15	0.15	0.14	0.12	0.11	0.14	0.12	0.12	
		揚水量実績(m3)	1050.15	1605.27	2679.84	2645.71	1200.02	631.67	435.89	654.25	1002.78	1248.43	1024.37	1234.99	606.61	183.43	1685.08	5521.55	1833.65	1131.10	635.92	3316.06	3490.84	3321.11	2899.28	4145.14	
	低濃度地域	ジオキサン残量(g)計画	6932	6637	6166	5733	5551	5458	5395	5302	5161	4990	4855	4696	4620	4598	4393	3750	3568	3461	3403	3104	2816	2569	2371	2111	
		ジオキサン濃度(mg/l)想定	0.184	0.176	0.163	0.152	0.147	0.145	0.143	0.140	0.137	0.132	0.129	0.124	0.122	0.122	0.116	0.099	0.095	0.092	0.090	0.082	0.075	0.068	0.063	0.056	
第二帯水層		比	1.00	0.94	0.78	0.77	0.52	0.52	0.51	0.73	0.83	0.88	0.62	0.64	0.65	0.69	0.56	0.64	0.63	0.61	0.67	0.69	0.66	0.50	0.51	0.47	0.59
为一市小店		ジオキサン濃度実測(mg/l)	1.87	2.37	2.51	2.01	1.97	1.82	1.86	2.00	2.30	2.07	1.90	1.70	1.75	1.71	1.35	1.01	1.89	1.81	1.81	1.60	1.47	1.72	1.25	1.15	
		揚水量実績(m3)	606.13	198.63	1153.00	681.14	586.36	607.69	429.74	640.80	966.81	810.46	499.42	490.43	414.36	176.60	1673.24	5514.87	1824.53	1122.36	627.67	2399.35	2486.75	2371.70	2214.46	3166.63	
	高濃度地域	ジオキサン残量(g)計画															19885	13014	11580	10804	10402	8911	7597	6540	5699	4655	
		ジオキサン濃度(mg/l)想定															1.345	0.880	0.783	0.731	0.704	0.603	0.514	0.442	0.386	0.315	
		比															1.00	0.87	0.41	0.40	0.39	0.38	0.35	0.26	0.31	0.27	0.46

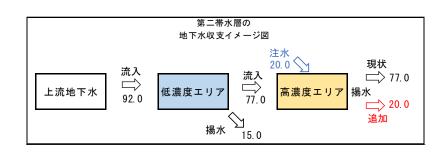
7. 1, 4-ジオキサン浄化シミュレーション



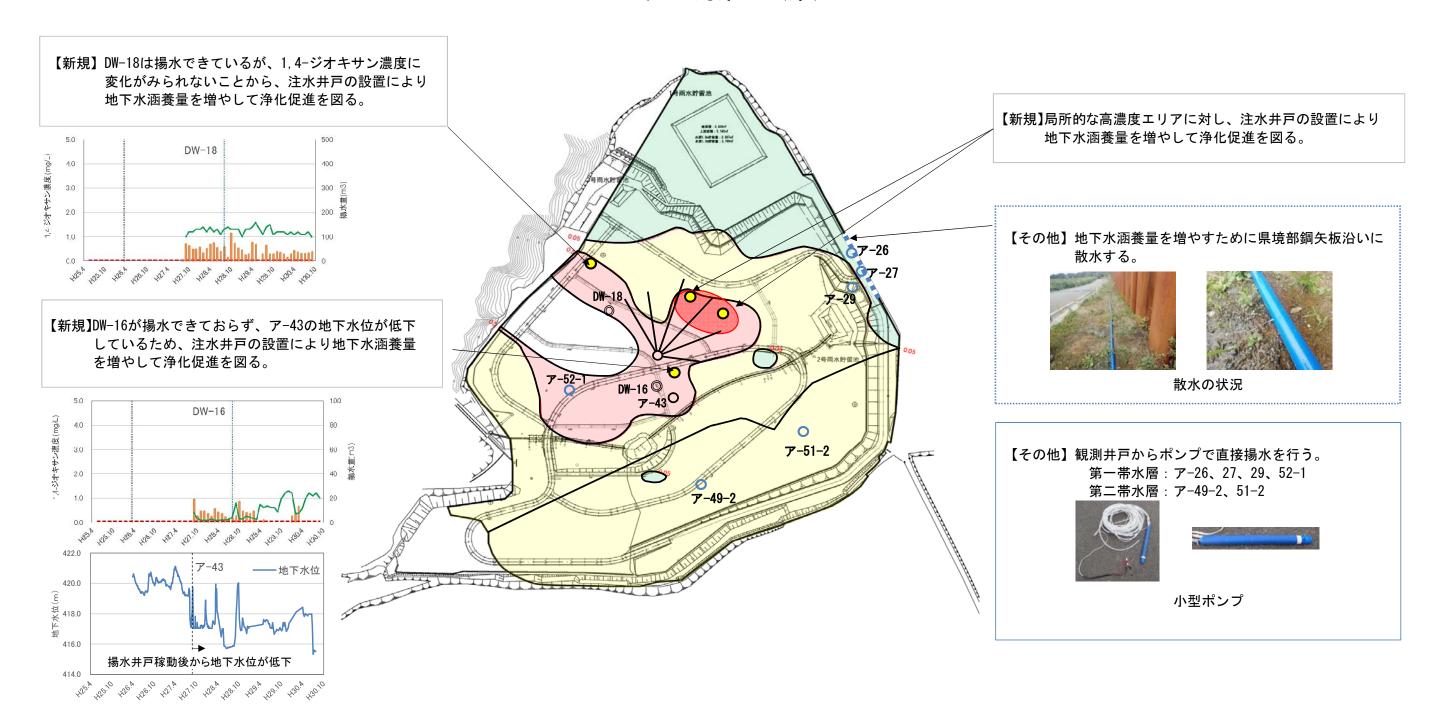
14-ジオキサン中芍 謙威(mg/	1.5 1.0 中間評価(H28) 0.0 _K T ^h _I (R ^h _I (R ^h _I (R ^h _I)	第2次評価	33.4適合 環境基準0.05mg/L 1,15 ⁵ 1,15 ⁸ 時間(4	手)
		中間評価 (H28)	第2次評価 (対策なし)	
[=	ェリア面積 (㎡)	25, 951	24, 176	
;	深さ(m)	2. 5	2.9	

		中間評価 (H28)	第 2 次評価 (対策なし)
エリアロ	有精(m²)	8, 584	3, 522
深さ(m)	120 (111)	1.8	2. 4
有効空隙	東率	0. 30	0. 30
浄化効≅		1.00	0. 34
初期濃度	₹ (mg/L)	0. 32	0. 15
揚水量(15.5	28. 7
	H28. 08. 03	0.320	
	H29. 04. 01	0.320	
	H29. 10. 01	0.320	
	H30. 04. 01	0. 127	
	H30. 07. 01	0.089	0. 150
$\widehat{}$	H30. 10. 01	0.062	0.097
(mg/L)	H31. 04. 01	0. 024	0. 029
ı.	H31. 09. 01	0.010	0. 012
电	H31. 10. 01	0.004	0. 010
7	H32. 04. 01	0. 001	0.003
Ŧ.	H32. 10. 01	0. 001	0. 001
 	H33. 04. 01	0.000	0.000
1, 4-ジオキサン濃度	H33. 08. 01	0.000	0.000
4 , 4	H33. 10. 01	0.000	0.000
·	H34. 04. 01	0.000	0.000
	H34. 10. 01	0.000	0.000
	H35. 04. 01	0.000	0.000
	H35. 10. 01	0.000	0.000
	H36. 04. 01	0.000	0.000
	環境基準適合 必要な揚水量		7, 864
	環境基準適合 余剰揚水量※		24, 481

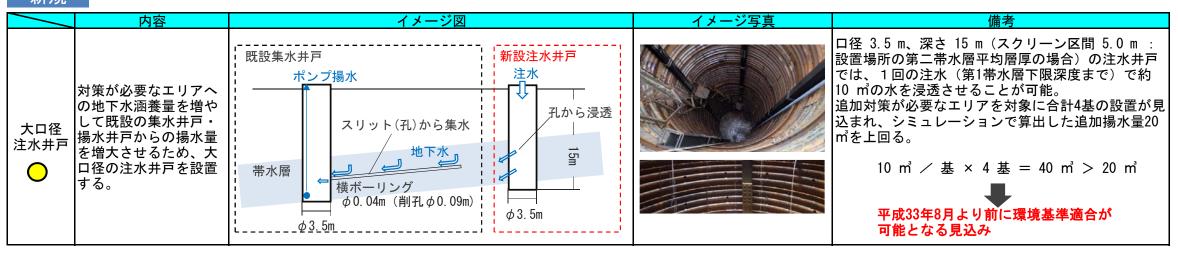
		中間評価 (H28)	第 2 次評価 (対策なし)
エリア	面積(㎡)	25, 951	24, 176
深さ(m)		2. 5	2. 9
有効空	非率	0.30	0. 30
浄化効薬	率	1.00	1. 36
初期濃原	隻(mg/L)	0. 33	0. 28
揚水量	(m ³ /日)	57.5	23.3
	H28. 08. 03	0.330	
	H29. 04. 01	0.095	
	H29. 10. 01	0.044	
	H30. 04. 01	0. 020	
	H30. 07. 01	0. 015	0. 280
$\widehat{}$	H30. 10. 01	0. 011	0. 242
l/8	H31. 04. 01	0.005	0. 176
=	H31. 09. 01	0.003	0. 136
更良	H31. 10. 01	0.002	0. 130
2	H32. 04. 01	0. 001	0.094
±.	H32. 10. 01	0. 001	0.069
π +	H33. 04. 01	0.000	0.050
1,4-ジオキサン濃度 (mg/L)	H33. 08. 01	0.000	0. 041
4.	H33. 10. 01	0.000	0. 037
_	H34. 04. 01	0.000	0. 027
	H34. 10. 01	0.000	0. 020
	H35. 04. 01	0.000	0. 014
	H35. 10. 01	0.000	0.010
	H36. 04. 01	0.000	0.008
	環境基準適合 a 必要な揚水量		23, 417
	環境基準適合 余剰揚水量(2, 843


第二帯水層 く低濃度エリア>

	<高濃度エリア>
	環境基準適合目標(H33.8)
1,4-ジオキサン平均濃度(mg/L)	2.0 実績 1.5 1.5 第2次評価(対策なし) 第2次評価(対策なし) 追加対策(揚水量+30.0m3/日) H33.5適合 追加対策(揚水量+20.0m3/日) H33.8適合
	H ₂ H ₂

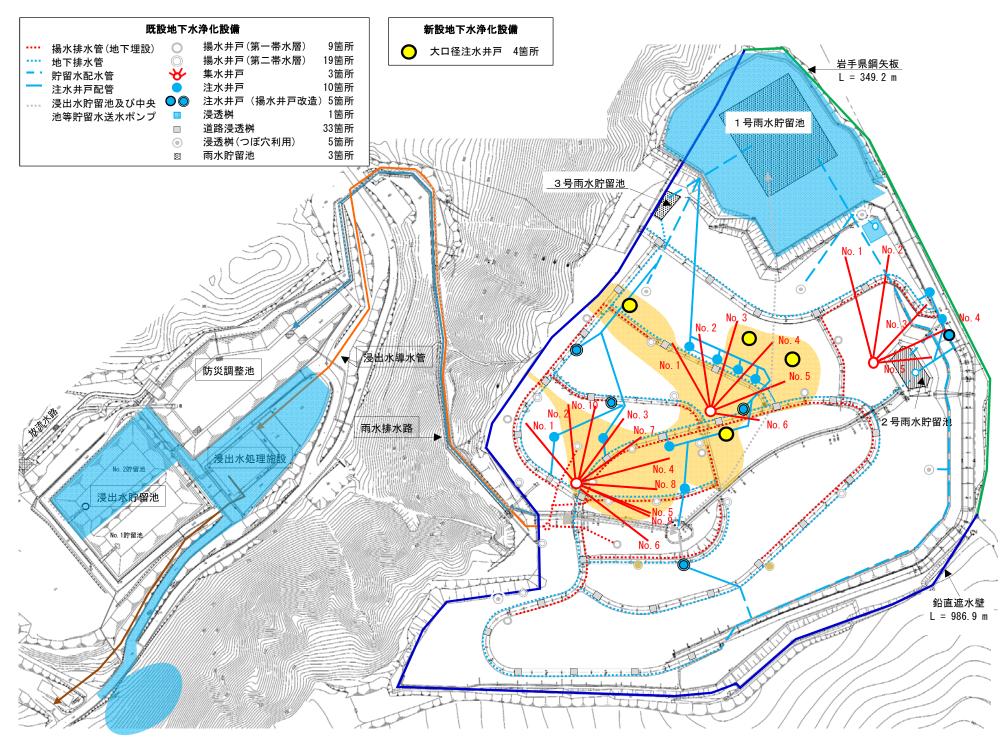

		中間評価 (H28)	第 2 次評価 (対策なし)
エリア	面積(㎡)	63, 171	29, 268
深さ(m)		5. 6	5. 2
有効空	 第率	0. 246	0. 246
浄化効率	率	1.00	0. 59
初期濃度	隻(mg/L)	0. 16	0. 12
揚水量	(m ³ /日)	108. 9	92. 0
	H28. 08. 03	0.160	
	H29. 04. 01	0. 138	
	H29. 10. 01	0.124	
	H30. 04. 01	0.096	
	H30. 07. 01	0. 085	0. 120
$\widehat{}$	H30. 10. 01	0. 075	0. 104
(mg/L)	H31. 04. 01	0. 058	0. 077
Ē	H31. 09. 01	0.046	0.060
臣	H31. 10. 01	0.045	0. 057
1, 4-ジオキサン濃度	H32. 04. 01	0.034	0. 042
+	H32. 10. 01	0.026	0. 031
+	H33. 04. 01	0. 020	0. 023
3)	H33. 08. 01	0.017	0. 019
4	H33. 10. 01	0.016	0. 017
_	H34. 04. 01	0.012	0. 013
	H34. 10. 01	0.009	0.009
	H35. 04. 01	0.007	0.007
	H35. 10. 01	0.006	0. 005
	H36. 04. 01	0.004	0.004
	環境基準適合 必要な揚水量		9, 600
	環境基準適合 余剰揚水量(7, 305

		中間評価		第 2 %	欠評価							
		中旬評1回 (H28)	対策なし	追加対策	追加対策	追加対策						
		(1120)	対束なし	(20m³/日)	(30m³/日)	(40m³/日)						
エリア面	面積(㎡)	17, 727		13, 094								
深さ(m)		8. 5	5. 1									
有効空隙	[率	0. 221		0. 221								
浄化効率	<u>x</u>	1.00		0.	46							
初期濃度	₹ (mg/L)	1. 30		1.	15							
揚水量(m ³ /日)	79. 0	77. 0	97. 0	107. 0	117. 0						
	H28. 08. 03	1. 300										
	H29. 04. 01	1. 142										
	H29. 10. 01	1.036										
	H30. 04. 01	0. 641										
	H30. 07. 01	0. 523	1. 150									
$\widehat{}$	H30. 10. 01	0. 427	0. 923									
1,4-ジオキサン濃度 (mg/L)	H31. 04. 01	0. 275	0. 566									
<u>.</u>	H31.09.01	0. 196	0. 387	0. 387	0. 387	0. 387						
農	H31. 10. 01	0. 185	0. 363	0. 357	0. 354	0. 351						
Ÿ	H32. 04. 01	0. 124	0. 229	0. 191	0. 173	0. 155						
ŁΨ	H32. 10. 01	0. 085	0. 147	0. 109	0. 093	0.080						
1	H33. 04. 01	0.060	0. 097	0.066	0. 056	0.048						
*>	H33. 08. 01	0. 045	0. 075	0.050	0. 042	0.037						
4.1	H33. 10. 01	0. 043	0. 067	0. 045	0. 038	0.033						
_	H34. 04. 01	0. 031	0. 045	0. 030	0. 025	0. 023						
	H34. 10. 01	0. 023	0. 031	0. 020	0. 018	0.016						
	H35. 04. 01	0. 017	0. 022	0. 014	0. 013	0.012						
	H35. 10. 01	0. 013	0. 015	0.010	0.009	0.009						
	H36. 04. 01	0. 010	0. 011	0.007	0. 007	0.006						
環境基準適合までに 必要な揚水量 (m3)		_	100, 779	107, 779	100, 505							
	環境基準適合 余剰揚水量(_	_	_	_						



[※] 環境基準適合後、H33.8まで同条件で揚水した場合に確保できる水の量。

8. 追加対策工(案)


新規

注水井戸からの集水量(1基当たり)

注水井戸からの果水里(「基ヨにり)							
D	3. 5						
Н	5. 0						
а	24. 71						
b	16. 24						
k	8. 29E-07						
Kf	139. 8						
Q	1. 2. E-04						
Q	10						
	D H a b K Kf						

9. 現場における水収支と浸出水処理施設の処理能力

浸出水処理施設の処理能力について

○ 浸出水処理施設の最大処理能力:340 m³/日浸出水量(H29.10~H30.7の平均):265.5 m³/日

追加揚水量:40.0 m³/日

※ 追加対策後の浸出水量:305.5 m³/日 < 340 m³/日 となり、浸出水処理施設において処理可能。

水需給シミュレーション(H30.7~H33.8)

【需要量】		
 項目	数量	備考
		環境基準適合までに必要な揚水量
必要揚水量	141, 386 ㎡	第一帯水層: 7,864 ㎡(県境部) 23,417 ㎡(中央・下流部) 第二帯水層: 9,600 ㎡(低濃度エリア) 100,505 ㎡(高濃度エリア、+40㎡/日) 合計: 141,386 ㎡

【供給量】		
項目	数量	備考
降雨による地 下浸透量	134, 902 m³	降水量(H27降雨量:過去5年で最も小雨) × 地下浸透率(34.4%) × 期間(H30.7.1~H33.8.1) ※ 127,094 ㎡/年 × 0.344 × 3.09 年 = 134,902 ㎡
水処理施設 No. 2貯留池か らの供給量	16, 970 m³	雨水集水量 × 期間 (H31.4.1~H33.8.1、 冬期間 (12~3月) を除く) ※ 10,900 ㎡/年 × 2.34 年 × 8/12 = 16,970 ㎡
1号雨水貯留池 からの供給量	20, 365 m³	雨水集水量 × 期間 (H30.7.1~H33.8.1、 冬期間 (12~3月) を除く) ※ 9,900 ㎡/年 × 3.09 年 × 8/12 = 20,365 ㎡
計	172, 237 m³	

需要量く供給量となり、浄化に必要な水を確保可能

【供給量:追加	1		
項目数量		備考	
基準適合した 他のエリアか らの供給量	23, 086 m³	第一帯水層: 24,481 ㎡ (県境部) 2,843 ㎡ (中央・下流部) 第二帯水層: 7,305 ㎡ (低濃度エリア)	

小雨等により供給量が確保できない場合を想定し、浄化が完了したエリアの地下水を他の エリアに供給することで、効率的に浄化を進めることが可能となる。

(参考) 雨水集水量の計算

(計算式)

集水量 (㎡/年) =集水エリア面積 (㎡) × 流出係数×年間降雨量 (mm/年) /1000 - 蒸発エリアの面積 (㎡) ×年間蒸発散量 (mm/年) /1000

	浸出水処理施設周辺	1号雨水貯留池周辺
集水エリア面積(㎡)	21, 600	12, 300
流出係数 ^{※1}	0. 472	0. 778
年間降雨量 ^{※2} (mm/年)	1, 198. 7	
蒸発エリアの面積 ^{※3} (㎡)	2, 600	3, 190
年間蒸発散量 ^{※2} (mm/年)	489. 5	
集水量(㎡/年)	10, 900	9, 900

※1:森林0.2、路面及び法面0.7、貯留池1.0とし、全体の面積から流出係数の平均値を算出

※2:平成27年の値を採用

※3: No. 2貯留池及び1号雨水貯留池の面積